Ube3a Imprinting Impairs Circadian Robustness in Angelman Syndrome Models

نویسندگان

  • Shu-qun Shi
  • Terry Jo Bichell
  • Rebecca A. Ihrie
  • Carl Hirschie Johnson
چکیده

BACKGROUND The paternal allele of Ube3a is silenced by imprinting in neurons, and Angelman syndrome (AS) is a disorder arising from a deletion or mutation of the maternal Ube3a allele, which thereby eliminates Ube3a neuronal expression. Sleep disorders such as short sleep duration and increased sleep onset latency are very common in AS. RESULTS We found a unique link between neuronal imprinting of Ube3a and circadian rhythms in two mouse models of AS, including enfeebled circadian activity behavior and slowed molecular rhythms in ex vivo brain tissues. As a consequence of compromised circadian behavior, metabolic homeostasis is also disrupted in AS mice. Unsilencing the paternal Ube3a allele restores functional circadian periodicity in neurons deficient in maternal Ube3a but does not affect periodicity in peripheral tissues that are not imprinted for uniparental Ube3a expression. The ubiquitin ligase encoded by Ube3a interacts with the central clock components BMAL1 and BMAL2. Moreover, inactivation of Ube3a expression elevates BMAL1 levels in brain regions that control circadian behavior of AS-model mice, indicating an important role for Ube3a in modulating BMAL1 turnover. CONCLUSIONS Ube3a expression constitutes a direct mechanistic connection between symptoms of a human neurological disorder and the central circadian clock mechanism. The lengthened circadian period leads to delayed phase, which could explain the short sleep duration and increased sleep onset latency of AS subjects. Moreover, we report the pharmacological rescue of an AS phenotype, in this case, altered circadian period. These findings reveal potential treatments for sleep disorders in AS patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice

Mutations or deletions of the maternal allele of the UBE3A gene cause Angelman syndrome (AS), a severe neurodevelopmental disorder. The paternal UBE3A/Ube3a allele becomes epigenetically silenced in most neurons during postnatal development in humans and mice; hence, loss of the maternal allele largely eliminates neuronal expression of UBE3A protein. However, recent studies suggest that paterna...

متن کامل

Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing

Genomic imprinting is an epigenetic phenomenon resulting in parent-of-origin-specific gene expression that is regulated by a differentially methylated region. Gene mutations or failures in the imprinting process lead to the development of imprinting disorders, such as Angelman syndrome. The symptoms of Angelman syndrome are caused by the absence of functional UBE3A protein in neurons of the bra...

متن کامل

Molecular and Clinical Aspects of Angelman Syndrome.

The Angelman syndrome is caused by disruption of the UBE3A gene and is clinically delineated by the combination of severe mental disability, seizures, absent speech, hypermotoric and ataxic movements, and certain remarkable behaviors. Those with the syndrome have a predisposition toward apparent happiness and paroxysms of laughter, and this finding helps distinguish Angelman syndrome from other...

متن کامل

Circadian Biology: Rhythms Leave Their Imprint

A recent study has revealed that loss of neuronal expression of the paternally imprinted gene Ube3a in Angelman syndrome results in selective neuronal loss of robust circadian oscillations, with a resulting behavioural phenotype, and adipose tissue accumulation.

متن کامل

Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes.

Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are neurodevelopmental disorders of genomic imprinting. AS results from loss of function of the ubiquitin protein ligase E3A (UBE3A) gene, whereas the genetic defect in PWS is unknown. Although induced pluripotent stem cells (iPSCs) provide invaluable models of human disease, nuclear reprogramming could limit the usefulness of iPSCs from pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015